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HOW TO MAKE THE LANCZOS ALGORITHM CONVERGE SLOWLY
*

D.S. Scott

Abstract

• The Paige style Lanczos algorithm is an iterative method for finding a

few eigenvalues of large sparse symmetric matrices . Some beautiful rela-

tionships among the elements of the eigenvectors of a symmetric tridiagonal

matrix are used to derive a perverse starting vector which delays convergence

as l ong as possible. Why such slow convergence is never seen in practice

is also exami ned.
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1. Introduction

In 1950 Lanczos [2] presented an algorithm for reducing a symmetric

matrix , call it A , to tridiagonal form . The algorithm begins with an arbi-

trary unit vec tor q1. It produces a tridiagonal matrix T and an ortho-

gonal matrix Q such that

(1) Q*AQ = T and Qe1 = q 1

In practice the algorithm could not compete in speed or accuracy with later

methods based on explicit orthogonal transformations.

In 1971 Paige [3] introduced a modified version cf the algorithm which

could be used effectively to find a few eigenvalues , and their eigenvectors

too if desired , of a large sparse symmetric matrix. Paige suggested terminat-

ing the process prematurely at , say, the ~th step with T~ the j x j leading

principal minor of T and the first j columns of Q in hand . In

exact arithmetic

(2) Q~AQJ 
= T.

Let the spectral decomposition of T~ be

(3) T~ S~®S~ with 0 = diag(e~,O~,. .. ,e~) and S~S~ = I~

Define

V = ( ~~~ ~ 
j
~~= n Sj ‘~‘l’y2’”. ~Y~i 

~

Then ~~~~~~ ,O~ are the Rayleigh-Ritz approximations to the eigenvalues

of A (commonly called Ritz values) derivable from the subspace spanned by

the columns of ~~ 
and ~~~~~~ . ,y~ are the corresponding Ritz vectors.

The norm of the residual of y~, namely ~~~~~~~~ is a bound on the

accuracy of as an approximation to an eigenvalue of A.
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The Kaniel-Paige error estimates [1,3] lead us to expect that some of

the eigenvalues of T. should converge (have negligible error bound) for

• j << n , provided only that the starting vector q 1 is not pathologically

deficient -in the corresponding eigendirectio ns of A. Numerical tests by

Paige and other researchers have confirmed that convergence occurs relativel y

quickly. Despite this abundance of evidence , Paige was unabl e to prove that

convergence of some Ritz value must occur before j n = dim(A) at which

• point , in exact arithmetic , T is similar to A so that all the ~approxi-

mations~ are exact and all the bounds are zero.

There are several interesting unresolved problem s connected with the

Lanczos process. Except in its last section , this paper is restricted to

the theoretical behavior of the algorithm in the context of exact arithmetic.

In the follow i ng section we derive some beautifu l relationships among the

elements of the eigenvectors of a symmetric tridiagonal matrix which may be

• of interest in their own right. In Section 3 these results are applied to obtain

formulas for the Lanczos starting vector. In Section 4 these formulas are used

to find a perverse starting vector for matrices with wel l separated eigenvalues

which delays converqence until j =fl • Section 5 generalizes the construction

• to matrices wi th close or multiple eigenvalues to yield a vector which

delays convergence for a long time . The fina l section will indicate why

such slow convergence is never seen in practice.

2. The Eigenvectors of a Symmetric Tridi a~onal Matrix

Definition. Let adj(R) be the transpose of the matrix of cofactors

of R. This is usually called the adj~~~te or classicai adjoint of R. By

the Cauchy-Binet theorem

(1) R adj(R) = det(R)I
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Example. 
ri 0 1

R = j  1 1 1

L2 -l 1

-l -l
adj (R) = 1 — l 0

1 1

~ l 0 0
R adj(R) = 0 -l 0

Lo 0-1

Theorem 2.1 (Thompson and McEnteggert , l968)~ Let A = ZAZ*

with A = diag(X 1,X2, . . ., X~), Z = (z1~z2~...~z~) and Z~Z = I.

Then for i =

adj (X 1 1-A) = f l ( A~ -~ 1
)z

1
z~ = xA (A~

)zlz~
j~i

where xA (~
) is the derivative of the characteristic polynomial

of A.

Note that if is a multip le elgenvalue of A , then xA (X j) = 0, so

that the ambiguity in the choice of eiqenvectors doesn ’ t matter.

Proof. Let ~j  ~ A 1, for all i , so that (jiI-A)~ exists . Then

adj(~I-A ) = det(~iI-A)(~iI-A~~
1

= XA(~
)Z(P

~~~
) Z

= ZL~Z*

XA (P) n
where A is diagona l and A kk = ~~~~~~~~~~~~ fl (~j-A .). Since computing cofactors

k j=l ~
,j~ i
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does not involve division , adj(R) is a continuous function of R. There-

fore the last equation must hold even for p = A 1 . Setting p = A
1
, for

i = 1 ,2,3,... ,n, yields

adj (A 1 1-A) 
= ZAZ*

where
0 if k~~~i ,

A kk H ( ‘ ~~-‘~~) = n
r~ (~.—x .) if k i

j=1 1 
~

j�i

Since ~ (A~-A~) = xA (Al ), the result follows . 0
j = l
isi

Thompson and McEnteggert were working with general Hermitian matrices.

The application of their theorem to tridiagonal matrices was made by Paige [3].

Notation. Let

cy•~~~~

~r 
ar+l ~r+l EII~~r+l ~r+2 .

T . . . ,r,t 

EI~ . 

. 

. 

. 

13t-1
13t-l ct t

Let Xr ~~~ 
det(pI-T ~

), the characteristic polynomial of Tr ~
, and

let Xr r l (t) I for all r.
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Theorem 2. 2 (Paige , 1971). Let T = T1~~ 
= SOS* with

0 = d i a q ( u 1, 02 , . . . , ) and S~S = I. Then for r < t and all i ,

~j ,n
(0i )5ri 5ti 

= X l ,r l (0i )~r~r+l~~~~t 1 Xt+l ,n (8i )

In particular

x j n (0i )~~i = X i ,r i (Oi )Xr+i ,n (Oi )

Proof. By Theorem 2.1

(2) adi (O~I_T) =

The (r,t) element of the RHS of (2) is x j n (0i )srjsti~ 
Because of the

tridiagona l form of T, the (r,t) element of the LUS of (2) is

Xl ,r_ l (0i )~r~r+1~~~
3t_l Xt+l ,n(0i )~ 

For examp le ,

ry ~~~~~~~~ 

~l 
-

~~l 
Q

i t ? ~~2• -b~ O. —c~ —~3
8 I - T = • ~~‘ 1 -••—— -~~~

1 1 ,6 •
~ 3 ~~~~~ 

~rI -a 
~~~~

- 
j

The circled elements contribute to the (2,3) cofactor. Note that the minus

signs on the f ’ s cancel with the alternati ng si gns associated wi th the

cofactors. 0

3. Formulas_for Startir~g_Vectors

The Lanczos algorithm beg ins with an arbitrary unit vector q1 and

terminates with a tridiagonal matrix T and an orthogonal matrix Q such

• ~~~~~~~~ --~ •~~~~-~~~~~~~~-—•~~~~ -- •-
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that q1 is the first column of Q and AQ = QT. The process is geometric ,

i.e. it is invariant under orthogonal changes in coordinates . The coordinates

which give the most insight into the process are the eigenvectors of A.

In these coordinates the operator A is diagonal and the matrix Q

becomes the transpose of S, the matrix of eigenvectors of T. The matrix

equation AQ = QT becomes

(1) AS* = S*T

where A diag(X 1,X2, .. .  ,x ) .

Theorem 3.1. Let AS* = S*T as above. Then for i =

(i) s1j snjx~
(X j) = 

~l~2 ~n 
a constant ,

(ii) s~~x)~(X1 ) = x1,~~1(A ~).

Proof. Since A is similar to 1, XA (P) = XT (P)

(1) This is Theorem 2.2 with r = 1 and t = n.

(ii) This is Theorem 2.2 with r = n and t = n. 0

In order to refer to the Lanczos vectors , we need names for the columns

of S~. For this purpose, when 1 = A , we define

(2) P (p1,p 2,...,p ’ S~

Theorem 3.1(i) relates the first Lanczos vector p1 to the last Lanczos

vector p,.~. Theorem 3.1(11) relates p~ to the eigenvalues of T1 n_ l which

are the approximations to eigenval ues of A furnished by the (n_l) St step

of the Lanczos algorithm. Since Tl n  is similar to A , the Cauchy Inter-

lace theorem requires that the elgenvalues of T~_ 1~ call them
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satisfy the inequalities

(3) ~ 
...

Since  T 1 n ~ 
the tridiagonal matrix produced by the Lanczos a lgorithm , w i l l

be unreduced , the inter lacing must be str ict .

Theorem 3 .2. Let A = ZA Z * with A = diag (A 1 ‘~ 2 ’~ ~A~ ) and

Z~Z = I. Then the Lanczos algorithm run with a starting vector

q1 produces a Tl,n_ i w i t h  ei genva lues ji~ <112 < <
~ n-l i f

and only  i f  q 1 
= Zp 1, where

p
~l 

= ~~~~~~~~~~~~~~~~~ =

j~i 
j

Strict interlacing is required to make the quantity in the brackets positive

for all I.

Proof. The Lanczos a lgorithm produces the same T whether it runs on

the p a i r  (A ,q1) or (A ,p1). Combining th~ two parts of Theorem 3. 1 and

changing to the P notation yields

(4) 
~~~x

’ (A 
~~ ,n— l ~ 

=

for any starting vector p1.

If p 1 is  known , then by interpolation , 
~l,n-1~~~ 

can be found from

(4 ) ,  up to a constant factor. Hence 
~1’~2’ .•

~~’~n l ’  the zeros of

can be found.

If p1 2 . .  ‘~ n l  are gi ven , then p
~1, for i = 1 ,2 ,... ,n, can be

found from ( 4)  up to the mul t ip l icat ive factor - ‘ which can be determined
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by the required normalization of p1 . The ambiguity in the choice of sign

• for each component of p1 merely r e f l ec t s  the choice of sign for each eigen-

vector of T. All choices yield the same tridiaqonal matrix 1. 0

• The required q1 depends on both the eigenva lues and on the eigenvectors
• of A. The expression q1 

= Zp 1 clari f ies their roles ; Z is independent

of the A 1., w h i l e  p 1 is independent of Z.

Example. Let A = diag(1, 3 ,5 ,7 ,9 ) and p .  = 2i , for  I 1 ,2 ,3 ,4.

x ’ ( l )x
~

(l) = ( 1-3 ) ( l-5 ) ( 1-7 ) ( l-9 ) ( 1-2 ) ( 1-4 ) ( l -6 ) ( l -8 )  = 40320

x ’(3)x~(3)  = (3 - l) (3 -5 ) (3 -7 ) (3 - 9 ) (3 -2 ) (3 -4 ) (3 -6 ) (3 -8 )  = 1440

x’(5)x~(S )  = (5 - 1) (5 -3 ) (5 -7 ) (5 -9 ) (S - 2 ) ( 5 - 4 ) (5 -6 ) (5 -8 )  = 576

x ’(7)x~( 7 )  = ( 7 - l ) ( 7 — 3 ) ( 7 — 5 ) ( 7 - 9 ) ( 7 — 2 ) ( 7 - 4 ) ( 7 — 6 ) ( 7 - 8 )  = 1440

x ’(9)x~(9)  = (9 - l ) ( 9 -3 ) (9 -5 ) (9—7) (9 -2 ) (9 -4 ) (9 - 6 ) (9 -8 )  = 40320

so

p11 p51 
= = .OO4987r~

p21 p41 
- •ii5/v 1440 = .02635u 5

~3l = = .04167 r~5

By norma l ization TI
5 

= 17.749 and

p1 = (.0880 , .4677 , .7396 , .4677 , .0880 ) *

The La nczos algorithm run on 1, with p1 as the starting vector y ie lded

a T4 with elgenvalues 2, 4, 6, and 8 correct to the precision of the

machine used. 0

_ _
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4. Slow Convergence

Before examining the convergence properties of the Lanczos algorithm in

the light of Theorem 3.2 , it is useful to descri be in more detail the

properties of the Rayleigh -Ritz procedure . Let W be any subspace of

• and let P~ denote the orthogonal projection of J~T’ onto W. Then the

• Rayleigh-Ritz approximations to eigenpairs of A obta i ned from W are

precisely the eigenpairs of PwA whose eigenvec tors lie in W.

Theorem 4.1. If V C W then the Rayleigh-Ritz approximations

for A obta i ned from V are the same as the Rayleigh-Ritz

approximations for PwA obtai ned from V. Further if (y,0)

is a Ritz pair then ii (PwA)y - yeH < ilAy - yO R , wi th equality

holding if and only if the residual vector , Ay -ye , lies in W.

Proof. Let P~, be the orthogona l projection onto V. Then

Pv (PwA) = ( PvPw)A = PvA , since V C W. Since y E V C W ,

II ( PwA)y ey
~ 

= IIP w
(Ay_ ye )lI . Finally since Pt~ 

is an orthogonal projection ,

HP~(Ay_yO)ll < HAy-yO u , w~th equality holding if and only if Ay - ye E W. 0

Corollary . If V and W are nested Krylov subspaces of

different dimensions , then ilAy-ye ll = I1P wAY_YOII .

Proof. If V = K.(q1 ) and W = K~ (q 1) for k > j, then , since

y e  K~(q 1 ), Ay -y O C K~~1 (q 1 ) C K~(q 1) = W .  0

We now examine the convergence properties of the Lanczos algorithm.

The reader is directed to Section 1 for the term inology .
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Theorem 4.2. Suppose that the Lanczos algori thm when run on

(A ,q1 ) produces 
~~~~~~~~~~ 

as Ritz values at the n_ 1 5t

step. Let (y,o) be a Ritz pair from any step except the ~
th

Then
E fAy-yOH > 6/2 ,

where 6 = mm t p 1 -A~~.~ i<n- 1
k<n

Proof. For any vector x and any scalar T it is well known that

(5) mm ~
X i

_ T
~ 

< lIAx-x-r lt
i<n

In particular ,

(6) mm P~-° I < HAy-you = y , and
i <n

(7)  mm p
1

-O~ < HPWAY_YOH 
= y

with the last equality followi ng from the Corollary. The smallest y which

can satisfy both (6) and (7) is 6 /2. 0

In practice ~
y can not be as small as 6 /2. However no significantly

stronger bound can be obtained. In particular , the smallest residual at the

f l 1
St step can be 6p

The combi nation of Theorem 3.2 and Theorem 4/~ yields the following .

Theorem 4.3. Let A be a symmetric matrix with eigenvalues

A 1 ~~
- 

A
2 

< A .  Let mm A l
_ A

k !. Then there exists a
I ft

starting vector for the Lanczos algorithm such that the residual

norm of any Ritz vector at any step j - n will be larger than
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Proof. If A has multiple eigenvalues then 6A 
= 0 and any vector

will do , so we may assume that A has distinct eigenvalues . Let

= (x
~
+x1÷1 )/2, for i = l ,2,...,n-l , and let q1 be any starting vector

• generated by Theorem 3.2. With this choice of q1, 
~l’~2’~”’~

’n-l will be

the Ritz values at the n_ l St step and 6 = 6A’2• The result now follows

from Theorem 4.2. 0

If the spectrum of A is such that 6A/4 is larger than some given

convergence tolerance , then Theorem 4.3 shows that there exist perverse

starting vectors which delay convergence until the ~th step. This result

does not imply that no earlier Ri tz value is accurate enough , it only

guarantees that the corresponding bound wil l  not reveal such accuracy . In

the previous examp le of A = d iag(1 ,3 ,5 ,7 ,9 ) and 
~~~ 

= 2i , for i = 1 ,2 ,3 ,4 ,

the mi ddl e eigenva lue of T 1 3  is  5, correct to working accuracy . The

correspond ing bound is 1.25 , wh ich shows that this fortuitous accuracy is

due to the symmetry of the example , rather than the accuracy of the Ritz

vector.

5. The Probl em of Clustered Eigenva lues

• If the spectrum of A is such that 6A’4 is smaller than the given

convergence tolerance , Theorem 4.3 does not guarantee slow convergence .

However start ing vectors can still be found which delay convergence a long

time . 

~~~~~~~~~~~~ ~~~
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Theorem 5.1. Let W be an A- i nvariant subspace of maximal dimen-

sion such that A A restricted to W is such that

larger than the given convergence tolerance. Let m dim W.

Then there exists a starting vector for A which delays conver-

gence until the mth step.

Proof. Apply Theorem 4.3 to A to yield a starting vector q1. Since

the Lanczos algorithm run on (A ,q1 ) yields the same T as the Lanczos

algorithm run on (A,q1 ), this will do. 0

• In general , it may be possibl e to del ay convergence even l onger.

b. The E3eneficial Effects of Rounding Errors

The s l e w  convergence discussed in the previous sections never seems to

• occur in practice. The reason for this lies in the formula for p1 g i ven

in Theorem 3.2 ,

( 1) P~l 
= 7T~~[X I ( A

1 ) < 1 ,n-*i~~~
1

First we give three examples.

Example 1. Linear distribution.

A.  = i for i = 1 ,2 ,...,50
1 ( A . +x .~1) 1

for i = 1 ,2 ,...,4 9 .

p1 was computed by Theorem 3.2. p1 is symmetric from top to bottom . The

largest elements of p~ are = P26 1 
= .397. The smallest elements

of P1 are P1 1  = P 5 0 1  
= .25x10~~

4. 

- -  ~~~~~— -~~~~~~~ _ _ _
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Examp le 2. Geometric distribution.

= (1.1) 1 for i = 1 ,2,.. .,50
(A ~+x.~ 1)p i = ~ for i = 1 ,2,.. .,49

The largest element of P1 iS P8 1  .495. The smallest element of P1
is P501 

= .l 62x lO
_52

.

Example 3. Tchebychev distribution .

cos(-~-~) for i = 1 ,2,... ,50

(A. +x.~1)
= ‘ 

~~~~ 
for i = l,2 ,...,49

The largest elements of p1 are p25 1 
= 

~~26 1 = .228. The smallest elements

of P1 are P 1 1 
= P5 0 1  = .642 x ~~~

The tiny elements of p1 in Examples 1 and 2 are due to the large varia-

tion in magnitudes of the numbers fx ’(A k )I k= l ,2, . . . ,n}. Most practical

examples also show large variations , which leads to a perverse starting

vector with some tiny eigencomponents . Such tiny components are unlikely

to appear in a randomly chosen vector. More importantly, such tiny components

are unstable in the face of rounding errors.

By standard rounding error analysis

(2) q1 
= Zp1 + f , H fII <

where € is the relative machine precision , in exact arithmetic ,

(3) Z*q1 
= p1 + Z *f 

~~~~~~~~~~~~~~~~~~~~~~~~~ •~~~~~~~~~ • ~~~~~~~~~~~~~~~~~~
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Unless  Z has some special symmetry , the term Z*f will swamp any tiny

component of p1 . That i s , q1 is unlikely to have any eigencomponents

• much smaller than e. Even if q1 had precisely the eigencomponents desired ,

the first step of the Lanczos algorithm would obl i terate the small components

unless the example were specially ri gged . The first step of the algorithm

computes q2 as

(4) 81q2 
= (A-c~1 I)q 1 + f , where il fil < n312e HA ff

Again f will be randomly distributed among the various ei gendirections

and will prevent q2 from inheriting any tiny components from q1.

We have been able to observe delayed convergence for large matrices

only for two classes. Tchebychev distributions come very close to minimizing

the variation in x~,~(-’~
). Therefore Tchebychev distributions (even on

fairly large problems ) do not have components of p1 smaller than e. The

other class of examples is dia~~na1 matrices in which the rounding errors

are uncoupled with tiny elements of p1 (which is q1 ) are not swamped by

small multiples of much larger elements . 

--
~~~~~~~~~~~

-- -
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